

Sustainable Logistics: How to drive the decarbonization of trucking?

July 2023

Table of contents

1 Sustainable Logistics

2 Decarbonization of Trucking

3 Way Forward

Table of contents

1 Sustainable Logistics

2 Decarbonization of Trucking

3 Way Forward

The Logistics industry is sitting on a sustainability time bomb

- Customers decarbonize their own value chains and define targets for scope 3 emissions
- Demand for sustainable solutions increases

- Working conditions of subcontractors and own staff particularly critical
- Social and environmental responsibility of a company important when choosing a place of work
- Driver scarcity

- Financial institutions step up pressure towards sustainability and climate protection
- Investments by the largest funds are made in companies in accordance with ESG criteria

- Increasing demands for sustainability reporting (e.g., CSR guideline, EU taxonomy, supply chain act)
- Reporting requirements and common taxonomy drive transparency

- Sustainability may increase costs, but also drives cost efficiency
- Sustainability provides opportunity for differentiation and increases competitive pressure

An integrated sustainability strategy for logistics encompasses five building blocks

Decarbonization

 Reduce emissions from all operations and strive for usage of alternative energies and technologies

Circularity

(E

(E

S

S

G

- Circularity approaches for packaging and for assets (e.g. trailers, forklifts)
- · Logistics services facilitation a circular economy

Employee wellbeing

• Aim for a fair and uplifting environment supporting all employees in their daily job

Sustainable supply chain

Strive for a value chain which supports environmental and social sustainability
 across all own and sub-contracted operations

Governance

 Anticipate and embrace regulation and emerging ESG standards in the company's governance, steering mechanisms and KPIs

Table of contents

1 Sustainable Logistics

2 Decarbonization of Trucking

3 Way Forward

For the successful decarbonization of trucking 12 topics need to be addressed

Strategy& Decarbonization framework for Trucking

Technology & capabilities – Which technologies (e.g., AI, big data) and capabilities (e.g., carbon accounting) to be built up?

12

Decarbonization strategy

Decarbonization of trucking requires a massive transformation

Decarbonization roadmap for trucking in Germany

- Key questions for T&L players
- What are regulatory and customer requirements concerning decarbonization?
- What is the **decarbonization ambition** of the T&L player?
- Which goal should be achieved (e.g. SBTi)?
- How does the long-term roadmap towards 2045 look like?

- Limited room for efficiency improvement of combustion engine (4-9% reduction in greenhouse gas emissions depending on truck size)
- Bridge technologies may reduce climate impact, e.g. hybridisation (33-55% reduction in well-to-wheel emissions), bio-CNG (43-55%) and bio-LNG (57-70%)
- Only battery-electric trucks (BET) and fuel-cell trucks (FCT) enable full decarbonization at scale

Pathwavs

Mega players push the decarbonization agenda – mid-sized players are also active, yet public commitments still limited

ESG ratings across logistics players

			•		wega pi	ayers			Mid-	sized play	/ers	
ESG rating agency —	Market share	Rating scope and premise —	DB SCHENKER	DSV		ХРО		Raben			DACHSER Intelligent Logistics	
	43%	Scope: All dimensionsTarget group: Investors		A	ΑΑΑ		А					
ESG Risk Rating	31%	 Scope: All dimensions Target group: Investors 		16.72	17.28	23.33	15.62					
Quality Score	15%	 Scope: Governance (not including environmental and social dimensions) Target group: Investors 		2	7	5	4					
Integrated Performance Score	8%	 Scope: Decarbonization Target group: public (NGO) 		4	0	0	6					
SCIENCE BASED TARGETS DEVICE AMERICAN CONVOLUTION Near-term temperature alignment	n/a	 Scope: Decarbonization Target group: Investors, public 	2°C	<2°C	<2°C		1.5°C	<2°C				
Source(s): Manager Magazin, Bloomberg, Stra	ategy& research	not available MSCI (CCC AAA ESG Rating laggard leader	SUSTAINALYTIC ESG Risk Rating	severe	0-10	ISS ESG ♪1 Quality Score Wor	0 1 st best	Performance	0 worst	8 SC BAS	ENCE SED RGETS LUMEE ACTON Worst	1.5°C best

Score

9

BET and FCT are promising drivetrain options for trucks, CAT and SYT questionable

C

Deep dive: Alternative powertrain options for trucks

BET

Purely battery electric truck

Direct use of electricity in electric motor for propulsion; battery used as energy storage

- Decreasing vehicle costs as well as increasing load capacity and range
- High efficiency, low energy costs and high public acceptance

Hydrogen-Q powered fuel cell truck

Conversion of electricity into hydrogen; fuel cell to transfer hydrogen into electricity to be used in electric motor for propulsion

Competitive technology

- Decreasing vehicle and energy costs
- High flexibility due to low refueling speed (compared with charging) and high public acceptance

Overhead	
catenary	T
hvbrid truck	

Direct use of electricity in electric motor for propulsion; small battery used as energy storage, as main energy is transferred via catenary

- Non-scalable upfront investments with under-utilization of infrastructure
- Low public acceptance

SYT

Conversion of electricity into carbonaceous fuel or "synthetic fuel" (Power-to-Liquid or Power-to-Gas); internal combustion engine used

Competitiveness questionable

- High renewable primary energy investments due to low end-to-end efficiency
- High latency of additional renewable energy production to facilitate large-scale "synthetic fuel"

Key questions for T&L players

- Which drivetrain technologies will be **competitive** now and in the future?
- Which **technologies** are **suitable** given the specific use cases of the T&L company, which technologies should be discarded?
- Which technologies are relevant for niche applications?

Source(s): Strategy& Truck Study (09/2022) and E-Truck Readiness Study "How to foster eMobility truck fleets"? Strategy&

٠

BET outperforms ICE reg. TCO from 2025, FCT from 2030 – energy costs as main driver

Deep dive: Alternative powertrain options for trucks

Key questions for T&L players

- What is the **winning drivetrain technology**? What are the associated costs (TCO)?
- How does the technology roadmap for the individual T&L company and its specific use cases look like?
- How can **low TOCs** for ZEV be **realized** in practice?
- How can the **ZEV fleet be upscaled** and bottlenecks of auto OEMs be overcome?

Source(s): Strategy& Truck Study (09/2022) and E-Truck Readiness Study "How to foster eMobility truck fleets"? Strategy&

2 Truck and trailer technology

Electrified trailers facilitate truck range and decarbonisation

Electrified trailers – example

Key questions for T&L players

• How can trailers support the range of

Source(s): <u>Sustainable Truck Van;</u> <u>Electrification Coalition</u>; DB Schenker Strategy&

BET and FCT vehicle prices will remain higher than prices for ICE trucks

EU truck prices in 2025-2035 for ICE, BET and FCT (€k)

Key questions for T&L players

- How will **vehicle prices** for the different drivetrains evolve?
- How can **demand** be **aggregated** to speed up large-scale e-truck deployment (e.g., Fleet Electrification Coalition by Smart Freight Center)?
- Which funding opportunities do exist?
- How do the leasing models look like?
- How are **sub-contractors supported** in their shift towards a green fleet?

Mileage (km) per day (based on 250 working days per year) (Performance (power) Source(s): Strategy& Truck Study (09/2022) and E-Truck Readiness Study "How to foster eMobility truck fleets"?

Funding and leasing schemes should be checked to facilitate electrification of fleets Funding and Leasing

Green funding

- EU funding: New road toll system from May 2023 grants ZEVs a 50% discount up to €25k in savings per truck p.a.
- DE funding: €5bn for the charging network expansion for commercial vehicles (CVs) & passenger cars (PCs);
 - €1.6bn for purchasing zero-emission CVs
 - → Funding of 80% of additional investment for purchasing BET over ICE
 - → Funding of 80% of operating costs for zero-emission charging/fueling infrastructure

Funding and subsidies to electrify the fleet to be assessed

- Leasing rates are driven by depreciation/residual value plus interest, services/insurance and profits
- **Residual value** is impacted by depreciation of vehicle and battery, downcycling opportunities, and technological risks
- Initial analysis indicates that leasing rates for battery electric passenger cars are overcharging drivers – leasing rates for trucks to be checked
- Compatibility of leasing with eligibility for subsidies to be ensured

Key questions for T&L players

- What **funding and subsidies** can be accessed?
- How can **favorable financing conditions** for own vehicles be ensured?
- How competitive and "fair" are leasing rates for BEV?

Priorities of fleet operators for procurement of heavy duty trucks

Electrification of trucking requires massive additional electricity

Renewable energy requirements (in €bn; Germany)

Key questions for T&L players

- How to ensure a cost-competitive energy supply?
- What is the **energy mix** for recharging and the ensuing carbon footprint?
- How to secure access to green energy at affordable prices?
- Which strategic partnerships and long-term contracts are required for a competitive energy supply?

Key considerations electric energy supply	 Enormous additional energy demand for full electrification of truck fleet (>15% of current electricity generation in Germany) LSP need to ensure access to green energy for full decarbonization and competitive energy prices and contracts. Strategic partnerships with energy producers to be considered Significant price premium for public charging compared to depot charging. Premium for public charging likely to remain for some time due to low utilization of recharging infrastructure during ramp-up of fleets and lack of competition
 	_

Distribution Storage Renewable power Source(s): Strategy& Truck Study (09/2022) and E-Truck Readiness Study "How to foster eMobility truck fleets"? Strategy&

Depot chargers can be installed at moderate costs, public infrastructure needs to be built

Depot charging vs. charging parks

BET – Depot charging system (DCS)

Visualization

Strategy&

Charge speed	Up to ~ 50km/h

BET – Charging park (MCS + Overnight)

MCS: Up to ~850 km/h Overnight: Up to ~50 km/h

Refill duration	Charge for ca. 400 km range in 8h (overnight)	MCS: Charge for 400 km range in ~30 min Overnight: Charge of 400 km range in 8h				
Power	Total power of ca. 750 kW required per depot (for fleet of ~10 trucks) ¹⁾	MCS: Power up to 1.5 MW per charger Overnight: Required power of ca. 75 kW per truck (150 kW charger with ~ 2 cables)				
Cost	Medium-sized logistics company with fleet of ca. 10 trucks requires 3x 250 kW chargers with investment of ~€450,000 ¹⁾	Charging parks for 200 HDTs per day with 6 MCS chargers and 28 overnight charging bays require invest of ~€8.5 million per park				
1) Each 250 kW charger serving several trucks simultaneously via multiple cables Source(s): Strategy& analysis, Rose (2020), Fraunhofer ISI		EU regulation (AFIR) defines requirement for deployment and coverage of public chargers				

Key questions for T&L players

- What **type of charging** is required for the use profiles (depot vs. on route; overnight vs. fast mega-charging)?
- How to set up charging infrastructure in the depot?
- How to accommodate space requirements for overnight charging in depots?
- Are **battery-storage systems** in the depot required?
- How to embed charging into **depot operations**?
- Which coverage of public charging infrastructure to expect (e.g. AFIR)?
- How to ensure availability and compatibility of chargers?
- What are the **fallback options** (e.g. battery switch-packs)?

For the successful and cost-efficient operations of BEV a few challenges need to be overcome

Charging infrastructure

	Distribution	Long-haul
Fleet range	 Sufficientt range for urban distribution with current models, limitations for regional distribution; to be overcome with future models Rewe pilot showed: All urban delivery tours feasible with BET (without intermediate charging), regional tours ~50% (current models) 	 530 km per day driven on average by tractor trailers, 97% of trucks drive less than 800 km Current models: Range of ~500 km Future models: Range of ~800 km expected Futuricum truck reached 1.000 km under test conditions (2022)
Charging	 Depot-based charging. Majority of truck charging expected to take place in/near depots Overnight charging to become dominant model 	 Mix of depot charging and charging at public chargers on route Mandatory rest breaks after 4,5 hours (~350 km) to be used for power charging Mandatory rest break after 11 hours (~800 km) to be used for overnight charging
Payload	 Urban and regional delivery trucks with higher payload than diesel 	 Short-term payload losses (~1.6 tons in 2025), mid-term no payload losses (2030; due to lighter battery packs)
Key operations challenges	 Route planning for mixed fleets Matching of rest times with recharging during day 	 Route/network planning for mixed fleets Matching of rest times with recharging High electricity prices at public chargers Lacking compatibility of charger & truck Realizing low TCOs

Source(s): ACEA; Agora Verkehrswende (10/2022); T&E; Fraunhofer Study "Lieferverkehr Fallbeispiel REWE Group" (2021); Strategy& eReadiness Commercial Vehicles (01/2022) Strategy&

Key questions for T&L players

- What are the range requirements of different use cases and how can they be supported by BETs?
- · How to adjust route planning to account for the different vehicle/drivetrain restrictions?
- How to match charging times with rest times of drivers and standstill times of vehicles?

97% of trucks in Europe are long-haul delivery fleet, driving up to 800 km per day

Maintenance

Maintenance costs for BEV are lower than ICE, but capabilities such as technicians to be built **Operations criteria**

Key questions for T&L players

- How should the ideal operations model look like?
- How to deal with mixed fleets?
- What new **safety requirements** need to be addressed?
- Which **capabilities** are required for BET maintenance and spare parts handling?
- Who are the right partners for BET maintenance?

Maintenance costs Other costs

Source(s): ACEA; Agora Verkehrswende (10/2022); T&E; Strategy& eReadiness Commercial Vehicles (01/2022); Strategy& Truck Study (09/2022) United World Transportation Strategy&

8 Customers

T&L players have started to offer climatefriendly products Examples of climate friendly products

Parcel delivery

GoGreen

- CO₂ neutral transportation by investing in global projects for climate protection
- Option to choose train transport instead of truck transport

Land transport

Econeutral option

- Enabling carbon footprint offsetting through certified climate protection projects
- Cooperation with the European non-profit organisation atmosfair

Sea transport

Emissions dashboard

- Overview of emission data of goods traffic
- Suggestion of measures to reduce emissions

Air transport

Sustainable Air Fuels

 Giving passengers the option to select the use of synthetic fuels in the booking process

Key questions for T&L players

- How large is the potential for climatefriendly products (e.g. derived from clients' own climate goals)?
- How will the **willingness-to-pa**y a premium evolve (currently very few customers in land transport willing to pay extra)?
- What products are **competitors** offering or developing?
- What is the room for **differentiation**? How should products be configured?
- What can be learnt from other segments and industries?
- How should **prices** for climate-friendly products be set?

Source(s): <u>DHL GoGreen</u>; <u>DB Schenker Econeutral</u>; <u>MAERSK Dashboard</u>; <u>Lufthansa SAF</u> Strategy&

Fleet operators have limited experience with BET and there are several barriers for adoption Fleet operator perspective on BET

Experience with BET

Q Have you had any experience with battery electric trucks yet?

- Most operators without BET in their fleets have not experienced battery electric trucks at all
- Almost all of them have adopted alternative drivetrain options instead

OEMs should provide offers to increase first hand experience for ...

Barriers for adoption

- Q What are the major obstacles for increasing the electric vehicle fleet in your business?
 - **1** Range (and battery life) anxiety
 - **2** Lacking infrastructure and high charging duration/ frequency/ cost
 - 3 Limited number of BETmodels available
 - 4 Insufficient monetary incentives (e.g. government subsidies)

... but are still struggling with well-known barriers for adoption

Key questions for T&L players

- What is the **subcontractors**' **stance** on zero-emission trucks? What are the specific barriers for adoption?
- How can LSPs support their subcontractors during the transition to electrified trucks (e.g., technology decision, TCO/business case, use cases, capability building)?
- How can the **risks & opportunities** of electrification be **shared**?
- How can the utilization of Capexheavy BETs be facilitated?
- How are climate friendly drivetrain technologies reflected in procurement decisions for subcontracted services?

Source(s): Strategy& Truck Study (09/2022) and E-Truck Readiness Study "How to foster eMobility truck fleets"? Strategy&

Strategic partners for pilots and the climate transformation should be chosen wisely

Potential partners for decarbonization of land transport

Key questions for T&L players

- What can the LSP do **standalone**, where are **strategic partners** required?
- How are **pilots** for climate-friendly transport orchestrated? Which pilot customers and subcontractors are required?
- For which activities and during which stages of the transformation are strategic partners vs. transactional suppliers required?
- Which type of partners are required, e.g. Business, Public, NGOs (e.g., Smart Freight Center), what maturity/scale is required (e.g., startup/scale-up vs. large tech players/OEMs) ?

Table of contents

Sustainable Logistics

2 Decarbonization of Trucking

3 Way Forward

We support you on the decarbonisation journey

Lighthouse

Develop a lighthouse for the electrification of trucking (e.g. specific depot, sub-network)

Goals Proof of concept and demonstration of feasibility for electrification

Approach

Check and elaborate all the elements of the decarbonization framework

Our contribution

Strategy through execution

Capability driven strategy allowing an end-to-end transformation until final implementation

Focus on T&L industry and Automotive

Strong expertise in Transport & Logistics and Automotive industries

ESG expertise

Global network of experts, researchers and academics with regards to sustainability (e.g. carbon abatement, battery technology, climate reporting)

Strategy& is a global strategy consulting business uniquely positioned to help deliver your best future: one that is built on differentiation from the inside out and tailored exactly to you. As part of PwC, every day we're building the winning systems that are at the heart of growth. We combine our powerful foresight with this tangible know-how, technology, and scale to help you create a better, more transformative strategy from day one.

As the only at-scale strategy business that's part of a global professional services network, we embed our strategy capabilities with frontline teams across PwC to show you where you need to go, the choices you'll need to make to get there, and how to get it right.

The result is an authentic strategy process powerful enough to capture possibility, while pragmatic enough to ensure effective delivery. It's the strategy that gets an organisation through the changes of today and drives results that redefine tomorrow. It's the strategy that turns vision into reality. It's strategy, made real.

Contact us

Dr. Daniel Haag Director Transport & Logistics Strategy& daniel.haag@pwc.com

Dr. Jörn Neuhausen Director E-Mobility Strategy& joern.neuhausen@pwc.com

Melanie Spiegler Senior Associate Transport & Logistics Strategy& melanie.spiegler@pwc.com

Dr. Philipp Rose Director E-Mobility Strategy& philipp.rose@pwc.com

www.strategyand.pwc.com

© 2022 PwC. All rights reserved. PwC refers to the PwC network and/or one or more of its member firms, each of which is a separate legal entity. Please see www.pwc.com/structure for further details. Mentions of Strategy& refer to the global team of practical strategists that is integrated within the PwC network of firms. For more about Strategy&, see www.strategyand.pwc.com. No reproduction is permitted in whole or part without written permission of PwC. Disclaimer: This content is for general purposes only, and should not be used as a substitute for consultation with professional advisors.

Thank you

strategyand.pwc.com

© 2022 PwC. All rights reserved.

PwC refers to the PwC network and/or one or more of its member firms, each of which is a separate legal entity. Please see pwc.com/structure for further details. Disclaimer: This content is general information purposes only, and should not be used as a substitute for consultation with professional advisors.